

Current status of resonant inelastic Xray scattering spectroscopy (RIXS) and the need for nano-RIXS

Yi-De Chuang

Advanced Light Source, Lawrence Berkeley National Laboratory

ALS

Outline

- Introduction.
- Compare different spectroscopic probes.
- Advantages and limitation of RIXS.
- Which edge to choose? TM L or M edges?
- Few examples to argue the need of nano-RIXS.
- Conclusions.

Grand challenges

DOE BES five grand challenges -

- Control materials and processes at the level of electrons.
- Synthesize materials with tailored properties.
- Exploring emergent phenomena from complex correlations.
- Master energy/information flow at nanoscale with capability rivaling living things.
- Understand materials far from equilibrium states.

The goal is achieve the material control

Understanding complex phenomena requires sharper and sharper tools

Selection of experimental tools

IXS, APRES and Neutrons are the ideal tools

Comparison between different probes

Spectral Function

Single particle -

Charge: Angle-Resolved Photoemission Spectroscopy (ARPES): $I(\mathbf{k},\omega) \sim A(\mathbf{k},\omega)$

Two particles -

Spin: Inelastic Neutron Scattering (INS): spin-spin correlation $S(\mathbf{q},\omega)$

Charge: Inelastic X-ray Scattering (IXS): charge-charge correlation $S(\mathbf{q}, \omega)$

r-space

RIXS is a powerful probe, but needs improvements -

- Higher throughput
- Better resolution
- More capabilities

RIXS spectroscopy

Advantages of RIXS

- Directly coupled to charge degree of freedom.
- Bulk sensitive study interface properties; in-situ studies.
- Charge neutral process works with presence of electric/magnetic field.
- Not limited by optical transition rule dd excitations.
- Finite momentum-transfer study indirect bandgap and exciton dispersions.
- Resonance effect resonance enhancement of the electronic contribution and elemental selectivity.
- Symmetry selective polarization dependence.
- Not limited by core-hole lifetime ΔE can be greatly improved.
- Fast dynamics internal clock set by the core-hole when incident energy is detuned away from elemental edges.

... but RIXS has certain limitations (resolution and throughput)

RIXS at different edges

Edge	Energy range	Resolving power for 10meV	pros	cons
L	500eV ~ 1keV	1keV/10meV = 10 ⁵	large Δq small elastic peak on resonance fewer branching	large machine lower throughput (with reasonable OE)
М	50~100eV	100eV/10meV = 10 ⁴	small ∆q smaller machine larger throughput	strong elastic peak more branching

- S.G. Chiuzbaian et al. PRL **95**, 197402 (2005)
- L. Duda et al, PRL **96**, 067402 (2006)
- L. Braicovich et al, PRL 102, 167401 (2009)
- J. Schlappa et al., PRL 103, 047401 (2009)
- G. Ghiringhelli et al. PRL 102, 027401 (2009)

magnetic excitation (double-triplon) in $Sr_{14}Cu_{24}O_{41}$

Bi-magnon dispersion in layered cuprate (?)

Single magnon dispersion probed by IXS and neutron

Finite momentum transfer can be helpful in exploring the dispersion of excitations; however, could be an issue as well...

Cu K-edge RIXS spectrum (neglecting polarization, 4p)

RIXS is probing the wave functions of the involving states

Scientific case for nano-RIXS

Crystal field effect

L-edge, ∆E ~100meV

- Crystal field excitation (dd) + Coulomb repulsion play important roles in RIXS spectra
- Sensitive to intra-atomic distance (bond length)
- Sensitive to TM valency
- Sensitive to symmetry

A powerful probe for local electronic environment – important for determining the electronic structures of nanoparticles

G. Ghiringhelli et al. Euro. Phys. J. 169, 199 (2009)

Mn2+

Mn3+

Charge transfer @ nanoscale

H. Liu et al. Nano Lett. **7**, 1919 (2007) **Courtesy of Jinghua Guo** ■ Surfactant: Oleic Acid, C₁₈H₃₄O₂ [CH₃(CH₂)₇CH:CH(CH₂)₇CO₂H]

Energy (eV)

■ Solvent: *Dichlorobenzene*, C₆H₄Cl₂

Energy (eV)

Bandgap engineering

Intensity (arb. units)

- J. Guo et al. Int. J. Nanotech 1, 193 (2004)
- L. Vayssieres et al. Adv. Mat. 17, 2320 (2005)

Courtesy of Jinghua Guo

Elementary excitations in correlated systems

Orbital excitation - titanates

Strong phase separation

T (K)

Conclusion

- Nano-RIXS is a powerful probe for studying local electronic structures if we have the energy resolution and/or flux (near elastic peak and around crystal field excitations).
- Limitation on throughput and energy resolution will determine the scientific scope.
- Potential impact to energy science especially in the *in-situ* research.
- Important for understanding correlated electron system when electronic phase separation dominates.

Thank you

